VR全景是需要前期拍攝與后期合成的,單反加上魚眼相機就可以完成拍攝,后期可以通過平臺自動生成,酷雷曼不了解,但全景多可以自動合成全景
本回答由提問者推薦
1、投影方式
全景拍攝并非是多么時新的一個概念,事實上它甚至可以追溯到12世紀的《韓熙載夜宴圖》:
當然這并非真正意義上的沉浸式體驗,就算我們把這幅長畫給卷成一個圓筒,然后站在中心去觀看,也依然會覺得缺失了一點什么,沒錯,一個明顯的接縫,以及頭頂和腳下兩片區(qū)域的空白。
出現(xiàn)這種問題的原因是很簡單的,因為宋朝人并沒有打算把這幅畫做成沉浸式的體驗——當然這是廢話——真正的原因是,畫面對應的物理空間視域并沒有達到全包圍的程度,也就是水平方向(經(jīng)度)360度,垂直方向(緯度)180度。沒錯,說到這里,你一定想到了這張圖:
類似這樣的世界地圖也許在你家里的墻面上已經(jīng)貼了有一些年頭了,也許自從升上大學之后你從未正眼瞧過它,但是它卻符合一張全景圖片需要的全部條件,你把它放到各種VR眼鏡里去觀看的話,就宛若陷入了整個世界的環(huán)抱當中。
這種能夠正確地展開全物理視域的真實場景到一張2D圖片上,并且能夠還原到VR眼鏡中實現(xiàn)沉浸式觀看的數(shù)學過程,就叫做投影(projection)。
而那張看起來平凡無奇的世界地圖,使用的就是一種名為Equirectangular的常見投影方式,它的特點是水平視角的圖像尺寸可以得到很好的保持,而垂直視角上,尤其是接近兩極的時候會發(fā)生無限的尺寸拉伸。
下圖中對于這種投影方式的拉伸現(xiàn)象體現(xiàn)得更為明顯,注意看穹頂上的紋路變化,越是靠近畫面的頂端,就越是呈現(xiàn)出劇烈的扭曲變形。幸好,VR頭盔和應用軟件的意義也就在于將這些明顯變形的畫面還原為全視角的內(nèi)容,進而讓使用者有一種身臨其境的包圍感。
然而全景圖像的投影方式遠不止這一種,比如最近剛剛發(fā)布的理光ThetaS以及Insta360全景相機,就采用了另外一種更為簡單而有效的投影策略:
通過它的兩個魚眼攝像頭輸出的畫面,各自涵蓋了180度的水平和垂直視場角,然后將兩個輸出結果“扣”在一起就是全視域的沉浸式包圍體了。
當然,這種名為Fisheye的投影方式,生成的2D畫面事實上扭曲變形是更加嚴重的。而通過圖像重投影處理的方式將它變換到VR眼鏡中顯示的時候,受到圖像采樣頻率的限制(或者通俗點說,像素點大小的限制),這樣的扭曲被還原時會多少產(chǎn)生一定程度的圖像質(zhì)量損失,因而也可能會造成全景內(nèi)容本身的質(zhì)量下降。
由此看來,作為全景內(nèi)容的一種重要承載基體,投影圖像(或者視頻)不僅應當完整包含拍攝的全部內(nèi)容,還要避免過多的扭曲變形以免重投影到VR眼鏡時產(chǎn)生質(zhì)量損失。
那么,除了上述兩種投影方式之外,還有更多方案可以選擇嗎?答案是,當然了,而且有的是!
比如墨卡托投影(Mercator),它沿著軸線的拉伸變形比Equirectangular更小,對應實際場景的比例更為真實,但是垂直方向只能表達大約140度左右的內(nèi)容;
又比如Equisolid投影,也有人稱之為“小行星”或者“720度”全景,它甚至可以把垂直方向的360度視域都展現(xiàn)出來,但是前提是使用者并不在乎巨大的扭曲變形可能帶來的品質(zhì)損失:
那么,有沒有什么投影方式生成的畫面,是能夠覆蓋至少360度水平方向和180度的垂直方向,并且沒有任何畫面的扭曲變形呢?
答案是:沒有扭曲變形的單一圖像投影方式,是不存在的。然而,如果投影的結果畫面不是單一圖像的話,方法還是有的:
如果你正好是一位圖形開發(fā)或者虛擬現(xiàn)實軟件開發(fā)的從業(yè)者的話,這張圖對你來說應該是非常熟悉的,這就是Cubemap(立方體圖像)。
它相當于一個由六幅圖像拼合組成的立方體盒子,如果假設觀察者位于立方體的中心的話,那么每幅圖像都會對應立方體的一個表面,并且在物理空間中相當于水平和垂直都是90度的視域范圍。而觀察者被這樣的六幅畫面包圍在中心,最終的視域范圍同樣可以達到水平360度,垂直360度,并且畫面是絕對不存在任何扭曲變形的。
是一種很理想的投影結果了,并且如果你恰好懂得使用一些離線渲染軟件或者插件來制作和輸出全景內(nèi)容的話,這一定是最合適的一種選擇。然而,在實際拍攝當中我們卻幾乎不可能用到這種立方圖的記錄方式,原因很簡單——我們現(xiàn)有的拍攝設備難以做到。
2、拼接與融合
如果說有六臺攝像機,它們的FOV角度被嚴格限定為水平和豎直都是90度,然后造一個一絲不茍的支架,把這六臺攝像機牢固而穩(wěn)定地安裝到支架上,確保它們的中心點嚴格重合在一起,并且各自朝向一個方向——這樣的話,輸出的圖像也許能夠正好符合立方圖的標準,并且可以直接使用。
然而,無論攝像機鏡頭的感光面積,焦距參數(shù)(以及因此計算得到的FOV視場角度),還是支架的鋼體結構設計與制作,都無法確保精確地達到上面要求的參數(shù),幾mm的光學或者機械誤差看似無傷大雅,但是對于嚴絲合縫的立方圖圖像來說,必然會在最終呈現(xiàn)的沉浸式場景中留下一條或者多條明顯的裂縫。更何況還有支架運動時產(chǎn)生的振動問題,以及相機鏡頭老化產(chǎn)生的焦點偏移問題,這些看似細小的麻煩各個都足以讓我們剛剛構建的理想物理模型化為泡影。
理想和現(xiàn)實的差距如此之大,幸好我們還有解決的辦法——沒錯,如果在拼接的地方留下足夠大的冗余,然后正確識別和處理兩臺攝像機畫面重合的區(qū)域,這樣不就可以做到六幅畫面的輸出和組成全景內(nèi)容了嗎——而這正是全景內(nèi)容制作的另一大法寶,圖像的拼接與邊緣融合。
下圖是360Heros系列全景攝像機。
它使用了6個GoPro運動相機以及一個支架來輔助完成拍攝,這六臺相機分別朝向不同的方向,如果采用4X3寬視角設定的話,其水平和垂直FOV角度約為122度和94度。
在全景視頻拼接和輸出軟件中讀取六臺攝像機的輸入流或者視頻文件,并且設置它們在支架上的實際方位信息(或者直接獲取數(shù)碼相機本身記錄的姿態(tài)信息)。這樣我們就得到了足夠覆蓋全視域范圍的視頻內(nèi)容。
正如我們之前所描述的,因為無法做到精確的對齊,因此需要在每臺相機的視域角度上提供必要的冗余,因而得到的視頻畫面互相之間會存在一定的交疊關系,直接輸出全景畫面的時候,可能會存在明顯的疊加區(qū)域或者錯誤的接邊。雖然目前幾種常見的全景視頻處理工具,諸如VideoStitch,Kolor等具備一定程度的自動邊緣融合功能,但是很多時候我們還是免不了要自己手動去裁切和調(diào)整這些邊緣區(qū)域(例如下圖中使用PTGui來進行各幅畫面接縫的修正),擇取畫面質(zhì)量更高或者畸變更小的邊緣區(qū)域,并且確保畫面之間是嚴格對齊的。
這樣的工作耗時耗力,并且有一個重要的前提,就是作為輸入源的畫面必須能夠覆蓋360度全視域并且存在冗余。
正如我們之前所計算的,如果采用六個相機拼裝的方式,那么每個相機的FOV角度不應小于90度,對于GoProHero3系列相機來說,此時必須采用4x3的寬視域模式,如果是16x9的寬高比設置,那么垂直方向的FOV角度很可能無法達到要求的數(shù)值,進而產(chǎn)生“無論如何都拼接不上”的問題——當然我們可以通過在支架上調(diào)整各個相機的朝向角度,或者增加相機的數(shù)量,來避免這一問題的產(chǎn)生,不過無論從何種角度來看,采用接近1x1的寬高比的寬視域相機都是一個更為理想的選擇。
如果只是為了輸出一張全景圖片的話,那么上面的步驟通常來說已經(jīng)綽綽有余,不需要再考慮更多的事情。但是,不會動的圖片是很難讓戴上VR頭盔的人哇哇大叫的,能看到身邊戰(zhàn)火紛飛,或者野鬼出沒的動態(tài)景象才更加刺激。如果你正在考慮如何制作如是的VR電影,那么有一個問題不得不提出來,那就是——
同步性——簡單來說,就是你手中所有的攝像機如何精確保證同時開始,以及在錄制的過程中保持幀率的一致性。
這看起來似乎并不算什么問題,然而如果兩臺攝像機的開始時間不一致的話,會直接影響到它們的對齊和拼接結果——甚至如果場景中存在大量的動態(tài)元素或者相機位置在這個過程中發(fā)生了改變的話,結果可能根本是無法對齊的。因此,對于需要大量攝像機同時參與的全景拍攝工作而言,同步開始以及同步錄制的需求就變得分外重要了。
要從硬件上根本解決這個問題,可以用到“同步鎖相”(genlock)的技術,即通過外部設備傳遞時間碼來控制各臺相機的同步運行(典型的例如RedOne專業(yè)電影攝像機)。當然并不是所有的攝像機都具備專門的Genlock接口,這種情況下,也可以考慮一些傳統(tǒng)或者是看起來略微“山寨”的同步方法,例如:路見不平一聲吼……
在拍攝開始的時候,演員大吼一聲,或者用力拍一下巴掌。然后在進行拼接的過程中,找到每個視頻當中吼聲對應的時間節(jié)點,作為同步開始的位置,然后再進行全景視頻的拼接。這種方法雖然并沒有什么精確性可言,但是同樣沒有開銷什么額外的成本;但是確保了基本的同步起始位置之后,再進行視頻的細微調(diào)節(jié)和拼縫工作,卻無疑從相當程度上簡化了后期制作的難度。
類似的方法還有給所有的攝像機蒙上黑布,然后開始拍攝的時候快速抽走,等等。總之在硬件條件無法完全具備的前提下,就是八仙過海各顯神通的時候了。
3、立體與偽立體
細心的你可能已經(jīng)發(fā)現(xiàn),之前討論的所有全景視頻的拍攝過程都忽略了一個要點:無論采用何種投影方式,生成的都只是一幅360度的全景內(nèi)容,放在PC或者網(wǎng)頁端去觀看當然沒有任何問題,但是如果要將這樣的內(nèi)容輸入到VR頭盔顯示器上,結果恐怕是不正確的。為了將畫面賦予立體感并呈現(xiàn)到人的眼中,我們提供的內(nèi)容必須采用左右眼水平分隔顯示的模式:
這看起來只是將原來的全景畫面復制了一份而已,但是悉心觀察的話,在靠近畫面邊界的位置就會發(fā)現(xiàn),左右畫面的內(nèi)容存在了一定的偏移。因為人的雙眼是存在一定的視角差的,雙眼各自看到的圖像有一定的差異,再通過大腦的解算就可以得到立體的感受。景物距離人眼越近,這種視差就越明顯,遠處的景物則相對沒有很強的立體感。
而任何一種現(xiàn)有的VR眼鏡,都需要通過結構的設計確保佩帶者的左右眼都只能看到實際屏幕的一半,也就是分別看到分隔后的左右眼畫面內(nèi)容,從而模擬了人眼的真實運作機制。
這種情形下,全景內(nèi)容的拍攝設備也需要做出一些對應的改動,比如將原來的6臺相機改成12臺相機,即每個方向都有左右眼兩臺相機負責拍攝;支架的構建形式也因此與原來的設計大相徑庭(圖中為360Heros3Pro12,使用了12臺GoPro運動相機)。
對于拼接和融合軟件來說,倒是并沒有什么特別需要做的,只是要先后兩次讀取六個視頻流,處理后輸出兩個不同的全景視頻,分別對應左右眼的畫面內(nèi)容。之后再通過后期工具或者應用程序將它們合并到一幅畫面中即可。
當然了,另辟蹊徑的路子也有很多,比如從2011年就震動了Kickstarter的眾籌者,卻直到如今VR全景應用大火卻依然沒有按期發(fā)出的Panono,它的設計原理是通過均勻分布在球體上的36個攝像頭來拍攝,拼接并得到左右眼的全景圖像。
這個設計雖然看起來拽得飛起,實際上卻是萬變不離其宗:朝向不同方向的36臺攝像機拍攝的畫面,疊加在一起足以覆蓋水平360度和垂直360度的視域范圍,并且一定可以覆蓋兩遍!再加上自身精準的結構設計和安裝姿態(tài),這樣就能夠從內(nèi)部準確計算出拼接后的全景圖像,并且直接按照左右眼兩幅圖像的標準輸出視頻流或者文件,其能夠輸出的實際分辨率也是相當可觀的。
與之相仿的還有Bublcam(四個遍布球身的超大廣角鏡頭),Nokia的OZO(8個遍布球身的廣角鏡頭),以及Jaunt研發(fā)中的產(chǎn)品等等。它們都具備直接輸出立體形式的全景內(nèi)容的能力。
當然了,最不濟的情形下,我們還有一種選擇,就是自己假造一種立體模式……
將原始的全景畫面復制成兩份,其中一份向左偏移一點,另一份向右偏移一點,然后各自做一個輕度的透視變換(為了模擬視線角度的偏轉)。這樣構成的“立體”畫面在多數(shù)情形下也具有一定的立體欺騙效果,但是對于近處的景物,或者左右眼畫面中的景物存在遮擋關系的時候(比如模擬臉貼在門上,一只眼被門閂擋住的情景),則會有明顯的瑕疵。當然了,對于依然對VR全景內(nèi)容處于懵懂階段的愛好者來說,這也許暫時不是什么嚴重的問題了。
具體價格還得看你的要求,拍攝難度,拍攝時長,像廣州地鐵、華南植物園這類型的,應該都不會太貴。當然,關鍵是要找到有性價比,有實力的團隊來操刀會比較好,廣州本地的,巨蕉做過不少案例,你可以先看看。
講真,要找當然是找性價比高的,不然我們行外人容易被坑啊。所以建議找那些有經(jīng)驗的初創(chuàng)型團隊,這樣效果、成本都有保證。我們之前找的是,華南植物園、廣州地鐵的供應商巨蕉VR。
相機、三腳架、鏡頭、軟件等等,需要的很多,對于小白來說一個人可能做不了,需要有專業(yè)人士來帶領。園 區(qū) v r 全 景 拍 攝 制 作 的 價 格 。 這 個 和 多 方 面 因 素 掛 鉤 , 比 如 地 區(qū) 差 異 , 質(zhì) 量 要 求 高 低 。 建 議 直 接 找 本 地 相 關 服 務 商 , 去 咨 詢 。 這 樣 客 觀 一 點 。 上 八 戒 v r 官 網(wǎng) 這 樣 的 服 務 商 很 多 , 而 且 平 臺 全 方 位 跟 蹤 服 務 。拍攝三維全景需要幾件必不可少的設備:
1、一臺單反相機或全景相機,最好是全景相機這種專門拍攝VR全景的相機。
2、拍攝用的鏡頭,魚眼鏡頭、廣角鏡頭等。
3、一個相機云臺,用來固定相機和轉換鏡頭
4、一個三腳架,用來支撐固定云臺和相機
5、后期制作平臺,建議選擇一些大公司的平臺進行制作,因為技術有保障,操作起來比較簡單,例如酷雷曼這種就很不錯。
VR全景如今不僅僅是一種視覺展示形式,而且被越來越廣泛的應用到商業(yè)之中,VR全景可以帶來沉浸式的體驗,是傳統(tǒng)圖片視頻所不能展示的。相機很好選擇,最好是2000萬像素,全幀,專用于360全景。三腳架也很容易理解。三腳架是用來穩(wěn)定相機,以實現(xiàn)360全景拍攝。全景視圖是拼接的,節(jié)點頭部是關鍵。360全景鏡頭是一種不同于普通鏡頭的高端拍攝設備。為什么它被稱為“全景攝像頭”?
因為全景投射頭有兩個主要功能。首先,它可以調(diào)整相機節(jié)點在縱軸上的旋轉。第二,全景頭允許相機在水平面上水平旋轉。這兩個功能可以使相機拍攝節(jié)點在三維空間中處于固定的位置,并保證相機拍攝的圖像可以通過軟件在三維全景視圖中拼接在一起。
在選擇鏡頭時,最好選用15 mm魚眼鏡頭,因為它的性價比比較好,VR全景制作可以去酷雷曼看看。
除了這些必要的設備外,還有一些其他設備需要配備。例如,鏡頭環(huán)和鏡頭環(huán)也是節(jié)點頭。剛看了一眼。鏡頭箍設計得相對輕巧,但僅適用于一個鏡頭。
除鏡頭箍外,還需要高桿、電板、校平機和多鏡頭同步拍攝設備。
高桿用于全景拍攝或懸掛拍攝。有三米、六米、九米甚至更高,可與三腳架組合使用。
本實用新型用于拍攝大型高清晰度矩陣膠片,以保證圖像旋轉角度的一致性,減輕攝影師的勞動強度。
該水平也是一個水平調(diào)整器,有三個旋鈕,以方便相機和云臺的水平調(diào)整,以確保垂直軸的旋轉。
多鏡頭同步拍攝設備最好選擇六種GOPRO組合,投擲PANONO,LADYBUG,iStar等產(chǎn)品,主要用于街景收集或新聞。
事實上,從編輯的角度來看,拍攝全景照片并不困難,只要拍攝方法正確,再加上合適的設備,這就不是很困難了。好吧,今天的分享到此結束。我希望這對你們大家都有幫助。
第一步,準備事宜。檢查電量,使用遠程遙控同步相.機時間,檢查遙.控器的電量,確保你帶齊所有的錄音裝置,反復檢查所需的服裝道具等,如果在戶外拍攝的話,記得提前查看天氣預報。
第二步,給組員充足的時間布置場景。一些瑣碎的事情總是會反復出錯,你需要留出充裕的時間用以觀察。在拍攝時,話.筒和其他小件的設備我們并沒有特意藏起來,因為后期可以抹去。但拍攝時如果沒有出現(xiàn)與場景無關的物體或人,那后期剪輯工作就會輕松得多。
第三步,布置好場景后,待機準備,確保相.機捕捉的畫面是你想要的。四處看看:天空、地面和獨.腳架附件的全景,因為觀眾都可以看到。
第四步,確保獨腳.架與地面呈90 垂直,可以使用水平儀調(diào)整。打開相.機的鏡頭蓋,使用擦鏡布擦拭鏡頭。反復檢查相.機的設置,確保同步。打開相.機的WiFi當你確定演員已經(jīng)熟背臺詞、知道走位和站位后,就可以開始錄制。
第五步,錄制完畢后,視頻測試??梢栽趗to vr上傳分享。1、首先你需要有一臺全景攝像機
2、其次需要準備一個拍攝環(huán)境
為了提供更真實的拍攝環(huán)境,攝像頭所及的環(huán)境不能出現(xiàn)與視頻無關的人或者事物,甚至是導演也要遠離拍攝現(xiàn)場或者進行適當?shù)膫窝b以免穿幫,所以視頻拍攝布景很重要。
3、vr視頻后期制作
由于vr視頻的制作拼接影響視頻的觀感,所以拍攝前一定要事先做好彩排,拍攝的時候最好一次通過。另外就是消費者觀看時會自己主動找場景,所以在視頻制作中要設置一些場景引導交互或者視頻制作后期在正在說話的人物旁邊加字幕,正確引導觀眾跟進劇情發(fā)展。